The shooting method converts the orbital insertion problem into a nonlinear least-squares problem.
LaTeX Reference
This section corresponds to Section 8 of nm_final_project.tex.
The Challenge¶
We want to find control parameters that achieve a circular orbit:
\[
\text{Find } \mathbf{u} = [\theta_0, t_{\text{coast}}, t_{\text{burn2}}, \alpha_2]^T
\]
Such that the final orbit is:
- At target altitude: \(a = R_E + h_{\text{target}}\)
- Circular: \(e = 0\)
- Horizontal insertion: \(\gamma = 0\)
Topics¶
- Shooting Method - Problem formulation
- Levenberg-Marquardt - Optimization algorithm
- Broyden Update - Jacobian acceleration
Algorithm Overview¶
graph TD
A[Initial Guess u₀] --> B[Simulate Trajectory]
B --> C[Compute Orbital Elements]
C --> D[Evaluate Residuals F(u)]
D --> E{||F|| < tol?}
E -->|Yes| F[Converged!]
E -->|No| G[Compute Jacobian J]
G --> H[LM Step: Δu]
H --> I[Line Search]
I --> J[u ← u + α·Δu]
J --> K[Broyden Update J]
K --> B
Mathematical Formulation¶
See Shooting Method for the complete derivation of:
\[
\mathbf{F}(\mathbf{u}) = \begin{bmatrix}
\frac{a(\mathbf{u}) - r_{\text{target}}}{r_{\text{target}}} \\
e(\mathbf{u}) \\
\gamma(\mathbf{u})
\end{bmatrix} \approx \mathbf{0}
\]